Can MELD Be Improved: Implications of HCV Therapy and CKD

Russell H. Wiesner, MD Professor of Medicine Mayo Clinic College of Medicine Rochester, Minnesota

AST-CEOT Phx, AZ Feb 25-27, 2016

Outline

- 1) MELD historical background
- 2) MELD impact
- **3) Shortcomings of MELD model**
- 4) Improving MELD model
- 5) Improving future MELD allocation policy

Important Concepts from the Final Rule

OPTN/UNOS Allocation Performance Goals

- Allocation should be based upon **objective and measurable medical criteria**
- Allocation in the order of **medical urgency**
- Avoid **futile** transplants
- Promote patient access to transplantation

Important Concepts from the Final Rule

OPTN/UNOS Allocation Performance Goals

- Minimize role of waiting times
- Allocation **shall not** be based on the candidate's **place of residence** or place of listing
- Organs shall be distributed over as **broad a geographical area** as feasible

MELD Model

Developed in TIPS patient Bilirubin, INR, Creatinine (etiology) Validated in UNOS patients Validated around the world—Europe, S. America, China Accurately predicts survival in advanced liver disease Used to allocate deceased donor livers since Feb. 27, 2002 Has held up to intense scrutiny

Deceased Donor Liver Allocation

February 2002 Changes:

Child-Turcotte-Pugh Score	$\rightarrow \rightarrow$	MELD Score

Ascites

Encephalopathy

Bilirubin

Protime INR

Albumin

— Bilirubin

- Creatinine

— Protime INR

(sodium)

MELD Score = $0.957 \times Log_e$ (creatinine mg/dL) + $0.378 \times Log_e$ (bilirubin mg.dL) + $1.120 \times Log_e$ (INR) + 0.643

ROC Curve for 3-Month Mortality on UNOS Waiting List

What does it do? Urgency Model

Estimates the probability of dying over time in patients with chronic liver disease

C-statistic 0.83 – 0.86

Impact of MELD

- Decreased deaths on waiting list
- Transplanted sicker patients (higher MELD 17-21)
- Increase HCC patients transplanted
- Post-transplant survival unchanged/improved
- Better defines survival benefit
- Allowed evidence-based decision-making

Challenges

- Restricted by geography and exceptions
- 15% prioritized wrong
- Exception MELD scores non standardized
- HCC over prioritized
- Regional Review Boards
- Geographic disparity
- Increasing female disadvantage
- Increasing number of liver/kidney transplants
- Increased cost High MELD

Approach to Further Reducing Deaths on the Waiting List

1)Increase number of donors
2)Improve MELD Model
3)Improve MELD Allocation Policy

Can We Improve MELD Model?

- Variable not used, ascites, encephalopathy, objective
- Add sodium
- INR measurement
- Use direct bilirubin measurement
- Better measurement of renal function (females)
- Re-weigh and cap variable in MELD

Significant Variables That Could NOT be Used in Model

- Etiology
- Recipient age
- Race
- Gender
- Transplant Center

Final Model – Creatinine, INR, Bilirubin

Sodium

- Hyponatremia associated with ascites and independent predictor of 3-month survival
- MELD Na—would affected 23%
- 7% of deaths on waiting list might have been prevented using MELD Na
- More important at lower MELD level (12-23)

Additional MELD Points Using Updated MELD-Na Equation

INR

- Variability laboratories
- Standardized for patients on Warfarin
- Need accurate, reproducible measure of coagulopathy in liver patients
- Costs of developing INR standard for liver disease
- Treating chronic PVT with Coumadin to increase MELD score

Direct Bilirubin

- Use of total bilirubin may overestimate degree of liver dysfunction
- 10% of population have Gilberts indirect bilirubin
- Hemolysis not uncommon in liver disease

Creatinine

- Inpatients with high serum bilirubin, serum creatinine can be overestimated.
- In females underestimated degree of renal dysfunction

Gender Disparity

- Females associated with a 15% increased risk of death on the wait list and 20% decrease in probability of receiving a liver transplant
- Serum creatinine underestimates renal dysfunction in females
- Better measurement of renal function and addition of sodium may attenuate this difference

Waitlisted Women 20% Less Likely Than Men to Undergo Liver Transplantation

Women Receive Fewer Creatinine-MELD Points Than Men With Similar Renal Function

MELD-Na Worsens The Disparity

Women Receive fewer Than Expected Transplants at all MELD Scores

Allen AM, et al; Transplantation 2014 (98):S-725

Adding 1 Point to Biological MELD in Women Corrects Disparity

Summary

- Women are disadvantaged in the current allocation system
- Serum creatinine underestimates renal dysfunction in women, resulting in 1-2 fewer MELD points
- Addition of Na to MELD worsens the disparity
- 1 MELD point deficit has considerable impact on women's success to available livers, but the exact extent should be further assessed with simulation models

Re-Weighing MELD Variables

- Changing boundaries for creatinine (0.8 3.0 mg/L and INR 1-3
- Weight of bilirubin increases
- Weight of INR and creatinine decreases
- Sodium is added

Results

Model	Concordance	
Original MELD	0.8653	
Refit MELD	0.8675	
MELD Na	0.8758	
Refit MELD Na	0.8778	

Would affect ~ 12% of transplantations and 29 fewer deaths per year

Conclusion

- Changes only lead to a small improvement of MELD model C-statistic
- Expense to re-program
- Unlikely to get concordance greater than 0.9 given random events that occur on wait list

Number of SLK transplants by Year

Survival Advantage of Receiving an SLK vs. Liver Alone Transplant

New Criteria for SLK

1) On dialysis regularly administered

2) GFR ≤ 30 ml/min at listing and one of following for 6 wks or more:

a) dialysis \geq once per week

b) Cr Cl \leq 25 ml/min measured once per week

Need to confirm eligibility every 7 days for 6 weeks

New Criteria for SLK (cont.)

- Local recipient who meets MELD kidney criteria
- OPO is required to offer kidney along with liver
- Regional recipient who meets MELD kidney criteria and MELD is ≥ 35 or Status 1, Regional OPO required to offer kidney along with liver

Safety Net

Chronic kidney disease 2-12 months after liver transplant

1) on kidney list or GFR ≤ 20
2) confirmed every 30 days
3) will receive additional priority for kidney transplant

Hepatitis C In DAA Era

- Decreased indications for liver transplant in HCV
- Should HCV patients with decompensated disease be treated pre or post transplant?
- Using Hep C (+) donors
- Using older donors for HCV patients

SVR in Hepatitis C Patients

- Decreased all cause mortality
- Decreased liver-related mortality
- Decreased need for liver transplant in some
- Lowered portal pressures
- Lowered frequency of HCC

Which preliver transplant patients will benefit and which will not benefit from treatment with DAA

SVR in Decompensated Cirrhotic with Hepatitis C

Charlton, et al. Gastroenterology 2015 Sep; 149(3):649-659

Change in MELD Score from Baseline to Follow-up Wk 12 in CPT B & C Patients

Charlton, et al. Gastroenterology 2015 Sep; 149(3):649-659

Improvement in MELD Score... Left with patients who are not sick enough for liver transplant (lower MELD Score), but too sick for life.

Transplant Purgatory

Treatment Considerations HCV MELD ≥ 20

1) Diminish threat of death on waiting list

2) Not much data on long-term followup? prevent liver transplant

3) Decrease response in cirrhotics to DDA

4) Hepatitis C (+) donors

5) Good results with post-transplant treatment

Post Transplant SVR Rates

Suraweera et al. Gastro & Hepatol 2016 Jan 12(1):23-30

Use of Hepatitis C Positive Donor in DAA Era

HCV (+) Donors – Weighing Benefits vs Risks

Shorten waiting time
 May prevent complications or death on waiting list
 Good results in treating HCV post-transplant

Using Hepatitis C Positive Donor

No difference in outcomes vs Hep C negative donors

a) Graft survival
b) Severity of hepatitis recurrence
c) Fibrosis formation
d) May be dominate genotype

Percent of HCV(+) Recipients Who Received an HCV(+) Donor By Year

Bowring M, et al. Am J Transpl 2016 Jan 16(S1):p73

Percent of HCV(+) Donor Livers Discarded By Year

Improving Meld Allocation Policy

Evidence-based Modifications to MELD Allocation

HCC
 Share 15
 Share 35
 Geographic disparity

Factors Involved in Allocation Policy

MELD ALLOCATION SYSTEM FOR HCC

Died or Removed From the List

Goldberg, et al. Liver Transplantation 2012; Volume 18, Issue 4, pages 434-443

Waitlist Dropout of HCC Patients

LDOR = 1 tumor <3 cm Complete Response AFP < 20

Mehta, et al. Liver Transplantation: In press

Recent HCC Consideration

Waiting period before activated Cap Hep C at MELD 34

Share 15 Went Into Effect 2005

What was the impact?

Mortality Risk of Liver Transplantation Vs Waiting Based on MELD

Merion R, Am J Transplantation 2005; 5: 307-313

Distribution of Livers Post Share 15

Why did Share 15 Not Increase Regional Sharing?

Applications for MELD 15 Exception

Before Share 155After Share 15452 (74% approved)

81% transplanted at MELD <15 (Median 11)

Bitterman et al., Liver Transplantation 2012; 18:1302

Reason Applying for MELD 15 Exception

Ascites57%Encephalopathy32%Pruritus3%Cholangitis3%Hydrothorax 1%5%

All accountable in MELD Score

Regional Differences

 Region 3
 44%

 Region 10
 29%

 Region 8
 1.5%

 Region 5
 2.2%

53% were from single center OPO's

Conclusion

- Play-to-Keep local organs and prevent sharing for sicker patients
- Points to need for National Review Board to normalize criteria for MELD exceptions
- Single-center OPO's should be eliminated

Or is it more about the Benjamin??

Most Important Impediment to MELD Allocation Policy is Geography

Regional Share 35

Started 6/18/2013 Help deal with geographic disparity

MELD/PELD 35+ Waiting List Outcomes: Competing Risks Analysis

Share 35 Allocation

Gentry et al, Am J Transpl 2016 Jan

Adult Deceased Donor Liver Transplant Recipients, by Region and MELD Score at Transplant

Transplant Rates @ 365 Days All Candidates Listed for a DD Liver Transplant 1/1/2007-6/30/09 Adults only, No Exceptions

* DSAs with <10 Txs during 2008 excluded

Proposal

- Broaden sharing
- 8 district model
- 4 district model

Optimized redistricting plans

Districts	Standard deviation of tx MELD	% MELD <15	% MELD >25	% Pediatric	Net total deaths	Net waitlist deaths
4	1.87	2.5%	64.3%	8.7%	-553.8	-581.1
8	2.08	3.7%	59.6%	8.1%	-332.4	-342.1
Local first	3.01	5.8%	50.1%	7.5%	0	0
Regional	3.26	5.5%	54.3%	7.7%	-164.6	-122.4
National	1.66	1.9%	83.3%	10.4%	-343.6	-509.9

Financial Impact of Redistricting

	Share 35	8 District	4 District
Pre-Transplant (Per Month)	6,038	5,934	5,928
Transplant + 1 yr (Per Patient)	187,120	191,811	195,228
Transportation Costs (Per Patient)	8,988	11,874	14,552
Post-Trx Care (Patient / month)	1,214	1,235	1,248

Conclusion

- MELD Model is excellent at prioritization of patient on the wait list based on survival
- MELD can be tweaked adding sodium, re-weighting variables, but impact would be minimal, expensive, and cumbersome
- Broad sharing and a National Review Board to standardized exceptions would have the largest impact in reducing deaths on the waiting list
- Better define who needs liver/kidney transplant
- HCC prioritization

Ideal Model

Small number of variables Objective parameters Readily available Standardized – Reproducible Continuous score reflects disease severity Applicable equally to all etiologies Internal/External Validation Evidence-based modification

Significant Variables That Could NOT be Used in Model

- Etiology
- Recipient age
- Race
- Gender
- Transplant Center

Final Model – Creatinine, INR, Bilirubin

Factors That Disadvantage Women

mayo

Can MELD be Improved: Implications of HCV Therapy and CKD

Could Share 35 Disadvantage Women?

Alina M. Allen MD¹, Julie K. Heimbach MD¹,

Joseph J. Larson¹, W. Ray Kim MD², Patrick S. Kamath MD¹, Terry M. Therneau PhD¹

¹Mayo Clinic, Rochester, MN ²Stanford University, Stanford, CA

Women Disadvantaged in MELD Era

- Equitable allocation for liver transplant framed on principles of utility and justice
- Organ allocation based on MELD/MELD-Na and exception scores
- Women less likely than men to undergo liver transplantation
- Disparities more obvious in MELD era

Moylan C. JAMA 2008 Lai J. AJT 2010 Mathur AK. AJT 2011

Could Share 35 Disadvantage Women?

AIMS

To Determine

1. The <u>difference in number of MELD points ("X")</u> derived from serum creatinine in men and women with *similar measured glomerular filtration rate (GFR)*

2. Whether <u>MELD-Na</u> corrects the disparity between sexes

3. Whether addition of "X" number of MELD points improves women's <u>deficit</u> in liver transplantation

Aim 1

Creatinine-derived MELD points in men versus women with similar renal function

Methods

- Adults listed for LT at Mayo Clinic, Rochester MN 2002 -2014
- GFR measured in all subjects by iothalamate clearance (gold standard)

Could Share 35 Disadvantage Women?

RESULTS

Patient Characteristics at Listing

	Women N=262	Men N=349	Total N=611
Age (median, IQR)	55 (47-61)	54 (44-59)	54 (45-60)
Bilirubin (mg/dl)	2.5 (1.3-5.0)	2.6 (1.3-4.5)	2.5 (1.3-4.7)
INR	1.2 (1.1-1.4)	1.2 (1.1-1.5)	1.2 (1.1-1.5)
Creatinine (mg/dl)	0.8 (0.7-1.2)	1.0 (0.8-1.2)	0.9 (0.7-1.2)
Measured GFR (ml/min/BSA)	68 (45-97)	80 (55-103)	75 (50-101)
MELD	13 (9-18)	14 (10-19)	14 (10-18)
MELD-Na	16 (11-20)	16 (12-21)	16 (11-21)

SVR in Post Transplant Hepatitis C Cirrhotics

Charlton, et al. Gastroenterology 2015 Sep; 149(3):649-659

90-Day Mortality on Waiting List C-Statistics

MELD	0.896
MELD-Na	0.912*
MELD-Albumin	0.913*
MELD-Na-Albumin	0.922*

***** P < 0.01

Myers, et al. PlusOne January 2013

Removed Because Mortality / Too Sick on List Chronic Liver Disease vs HCC (90 Days)

Dropout of HCC Patients with T₂ Lesion

Percent of Transplant Recipients with MELD/PELD \geq 15 by DSA

Reason for Removal from the Liver Wait List Among <u>Candidates</u> with MELD/PELD at Removal ≥ 15 Removal Date During Pre- or Post-Period

Summary: Post Share 35 Era Data

- Increased number / percent of MELD / 35+ transplants
- Increased regional sharing
- No impact of overall liver discard rate
- No impact to overall waiting list mortality
 - No impacts to waiting list mortality by age, ethnicity
- MELD / PELD 35+ waiting list candidates
 - Increased transplant rate
 - Decreased mortality rate
- Liver-Intestine candidates
 - Increased transplant rate
 - Mortality rate unchanged
- Post-transplant survival
 - No overall change
 - No change to outcomes for MELD/PELD 35+ recipients

Death Rates* @ 365 Days Candidates Listed for a DD Liver Transplant By DSA within Region

*Adults only, No Exceptions, Initial MELD>=15, Candidates with an Initial Status of 1A/1B Excluded, DSAs with fewer than 10 events excluded

MELD / PELD Allocation Summary

- Excellent predictor of pretransplant survival
- Decreased registrations (MELD < 10)</p>
- Decreased death rate on waiting list
- Transplant sicker patients
- Increase transplant of HCC patients
- Post transplant survival unchanged
- Resource utilization correlates with MELD
- Better defining impact of donor-recipient matching
- Better defining survival benefit optimal timing
- Evidence-based decision-making

How to Improve Allocation Policy

- 1) Larger sharing area eliminate single-center OPO's
- 2) Allow only recognized exceptions: HCC, HPS
- 3) National unbiased Review Board
- 4) Standardize INR for liver disease
- 5) Add sodium to MELD score
- 6) Better define those who need Liver/Kidney transplant
- 7) Better define Donor-Recipient matching to optimize outcomes
- 8) Pursue transplant Benefit Model

MELD ≥ 35: Pre 19% Post 29%

Cost Difference Pre 35 - Post 35

Pre Tx Cost Post Tx Cost 7,076 2,602

- Pre Tx cost reduction may offset increased cost of transplant patients with MELD \geq 35 (19-28%)

Eight Districts

Gentry et al, Am J Transpl 2016 Jan

Four Districts

Share 35 Regional Percentage January 2013

New 35 List	9.2% - 9.7%
$DAA \ge 35$	23.7% - 30.1%
Regional Share	18.9% - 30.4%

No change CPT Mortality - $\downarrow 30\%$ MELD > 30 Post-Trx loss, mortality Few died

Acceptance Rate

	22.3%	10.3%	
DAA	1.3	1.4	

MELD Exceptions

- Liver "diseases" whose natural history is not quantified by MELD
 - Hepatocellular carcinoma
 - Cholangiocarcinoma
 - Neuroendocrine
- Complications of cirrhosis that change the natural history of the disease, independent of liver function
 - Hepatopulmonary syndrome
 - Portopulmonary hypertension
- Diseases expressed in the liver, that do not cause liver disease
 - Familial amyloidosis
 - Hereditary oxalosis
 - Polycystic liver disease

MELD Exceptions	2013	
HCC – Not criteria	1185	
Hepatopulmonary	249	
Portopulmonary	81	
Hepatic artery thrombosis	63	
Metabolic disease	66	
Primary oxaluria	23	
Familial amyloid	22	
Other	2098	
	(PSC, ascites,	
	encephalopathy)	

Risk of Waitlist Mortality

Sharm, et al. Hepatology 2012; 55:192-198.

Summary: Key Points

- Regional sharing increased from 19.4% to 30.4% of deceased donor transplants
- MELD/PELD 35+ transplants increased from 19.9% to 25.2%
- Liver-intestine transplants increased from 12 to 44
- Liver discards decreased
- Waiting list mortality decreased 7%
- Import/export dynamics by DSA was similar between eras

OPTN

Liver Waiting List Death Rates: Deaths/100 Patient-Years

Proportion of Liver Transplant Recipients with a Waiting Time of 90 Days or Less by Region

mayo

Impact of MELD

- Reduction in waiting list registration (12%)
- Reduction in deaths on waiting list (3-5%)
- Decreased median waiting time (6-416 days)
- Transplanted within 30 days (23% 2001 to 37% 2008)

So is this really about looking out for the needs of John Q. Public?

Impact of Share 35

	Pre	Post
Allocated MELD \geq 35	23.1%	30.1%
Regional Share	18.9%	30.4%
CIT (hours)	6.0%	6.0%
Waitlist Mortality MELD ≥ 3	0 17.6%	16.3%
Post Tx Mortality	Unchanged overal	l except 4, 10
Post Tx Length of Stay	Unchanged	

