The Value Of Thyroid Hormone, Corticosteroids, Hypothermia and Other Means to Maintain/Improve Donor Heart Function

Sean P. Pinney, MD Director, Advanced Heart Failure & Cardiac Transplant Icahn School of Medicine at Mount Sinai

FEBRUARY 25-27, 2016 • PHOENIX, ARIZONA

Conflict of Interest Disclosure

• I have received consulting fees and clinical trial support from Thoratec, Inc.

Endocrine Failure After Brain Injury

- Anterior pituitary dysfunction prevalence 30%¹
- Abnormal function in one anterior pituitary axis in 53%²
- Estimated incidence hormonal reduction in TBI³
 - Adrenal 15%

- Vasopressin 3% 37%
- Thyroid 5 15%
- Gonadal 25% 80%
- Growth Hormone 18%
- Associations
 - Impaired aerobic metabolism
 - Increased anaerobic metabolism
 - Increased lactate production
 - Depletion high energy phosphates

1. Schneider J Neurotrauma 2005; 22: 937-946.

- 2. Dimopoulou Int Care Med 2004; 30: 1051-1057.
- 3. Powner Neurocritical Care 2006; 5: 61-70.

Hemodynamic Effects of T3

- Mediated by up-regulation of sarco-endoplasmic reticulum Ca2+ ATPase (SERCA).
- Independent of the betaadrenergic signaling pathway.
- Ameliorates postischemic cardiac dysfunction
- Improves contractile performance after excessive catecholamine stimulation

Ririe DG et al. Anesthesiology 1995;82:1004-12.

Glucocorticoids

- Membrane stabilizer
- Block up-regulation of inflammatory cytokines
- Maintains cardiac contractility – LV pre-load recruitable stroke work (PRSW)

McLean KM et al. *J Heart Lung Transplant* 2007;26:78-84. Lyons JM et al. *J Heart Lung Transplant* 2005;24:2249.

Hemodynamic Effects of Hormone Resuscitation

Hing AJ et al. Am J Transplant 2007;7:809.

Hemodynamic Effects of Hormone Resuscitation

Group	Mean arterial pressure (mmHg)	Heart rate (bpm)	Cardiac output (L/min)	Stroke work (mL.mmHg)	LAD flow (mL/min)
Pre-brain death (CON)	64 ± 18	99 ± 26	4.7 ± 1.1	3146 ± 1087	23 ± 10
Pre-brain death (HR)	59 ± 13	91 ± 12	4.1 ± 0.5	2916 ± 473	28 ± 5
3 h post-brain death (CON)	63 ± 9	161 ± 25	5.6 ± 0.9	3356 ± 724	35 ± 14
3 h post-brain death (HR)	61 ± 7	166 ± 27	4.6 ± 1.4	2634 ± 903	44 ± 17
6 h post-brain death (CON)	54 ± 15	186 ± 41	5.1 ± 1.9	2980 ± 1528	47 ± 23
6 h post-brain death (HR)	$74 \pm 17^{\dagger}$	157 ± 19	5.3 ± 2.2	3224 ± 1158	45 ± 25
6.25 h post-brain death* (CON)	38 ± 11	155 ± 25	3.2 ± 1.2	1536 ±702	31 ± 14
6.25 h post-brain death* (HR)	$72 \pm 21^{\ddagger}$	156 ± 15	$5.8 \pm 1.4^{\ddagger}$	$3540\pm1083^{\ddagger}$	51 ± 15

*Norepinephrine infusion fixed at 3.3 μ g/min.

[†]p < 0.05.

 $^{\ddagger}p < 0.005.$

LAD = left anterior descending coronary artery.

Hing AJ et al. Am J Transplant 2007;7:809.

Potential Organ Donor Management Hormonal Therapy (Human) T₃- Cortisol- Insulin

		Standard (26)	Hormone (21)
•	Unsuitable TXP	20%	0%
•	Dopamine ug/Kg/min	$14 \rightarrow 19$	$27 \rightarrow 13$
•	CV Fxn	\rightarrow	↑ 2x Cardiac output
•	EKG abnormal	Persisted	Improved
•	MAP	\rightarrow	56mmHg →86mmHg
•	CVP	\rightarrow	11mmHg $ ightarrow$ 7mmHg (\downarrow 35%)
•	HR	\rightarrow	67 → 91 (↑ 35%)
•	HCO ₃ Required	↑ 100%	↓ 95%
•	Lactate	NR	$5.1 ightarrow 2.4 \ (\downarrow 52\%)$
•	Temp	\rightarrow	$33^{0} ightarrow 36^{0}$

Novitzky Transplantation 1987; 43:852-854

Venkateswaran RV et al. Eur Heart J 2009;30:1771.

CONSORT: Hormone Resuscitation and Cardiac Output

Venkateswaran RV et al. Eur Heart J 2009;30:1771.

Tri-iodothyronine

Methylprednisolone

Venkateswaran RV et al. Eur Heart J 2009;30:1771.

Meta Analysis of Hormone Resuscitation

		Т3		Co	Control Mean Difference		Mean Difference	Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Goarin [9]	3.9	1.5	19	3.9	1.5	18	11.5%	0.00 [-0.97, 0.97]	+
Mariot [24]	3.1	0.9	20	3.1	0.9	20	34.4%	0.00 [-0.56, 0.56]	+
Perez-Blanco [40]	4.4	2.2	29	4.7	1.7	23	9.5%	-0.30 [-1.36, 0.76]	
Venkateswaran [47]	4.2	1.3	40	3.8	0.9	40	44.6%	0.40 [-0.09, 0.89]	-
Total (95% CI)			108			101	100.0%	0.15 [-0.18, 0.48]	•
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 2.06$, $df = 3$ (P = 0.56); $I^2 = 0\%$									
Test for overall effect: $Z = 0.90 (P = 0.37)$							Favours T3 Favours placebo		

Figure 2. Forest plot comparing the effect of triiodothyronine (*T3*) vs. placebo on cardiac index at the end of study drug administration. *CI*, confidence interval; *IV*, intravenous. Number in brackets indicates reference number.

- 16 Case series
- 7 Randomized trials
 - 4 Placebo controlled

Macdonald PS et al. Crit Care Med 2012;40:1635.

Novitzky D et al. Semin Thorac Cardiovasc Surg 2015;27:123-32.

Increased Procurement

	Gro (done	up A (T ₃ /T ₄) ors, n=23,022)	grouj (done	p B (no T ₃ /T ₄) ors, n=17,102)	
Organs	No. organs transplanted	Percentage of donors from which organs were transplanted ^a	No. organs transplanted	Percentage of donors from which organs were transplanted ^a	Statistical significance A vs. B (<i>P</i>)
Hearts	8,055	34.99	4,406	25.76	$< 0.0001^{e}$
Both lungs	8,070	17.53	4,278	12.51	$< 0.0001^{e}$
Single lung	798	3.47	442	2.58	$< 0.0001^{e}$
Both kidneys	33,722	73.24	22,018	64.37	$< 0.0001^{e}$
Single kidney	1,566	6.80	1,234	7.22	NS
Livers ^b	18,461	80.26	13,642	80.61	NS
Pancreas ^c	4,914	21.35	2,681	15.68	$< 0.0001^{e}$
Intestine ^d	597	2.59	400	2.34	$< 0.05^{e}$
Total	76,183 ^e		49,101 ^e		
Mean no. organs per donor	3.31 ± 1.78^{e}		2.87 ± 1.74^{e}		$< 0.0001^{e}$

Novitzky D et al. Transplantation 2014;98:1119-27.

Thyroid Hormone

PRACTICE |
 POLICY |
 POLICY |
 POLICY |

Donor Resuscitation

CUTTING EDGE OF TRANSPLANTATION 2016 **RESOLVING THE ORGAN SHORTAGE** PRACTICE | POLICY | DOLITICS

© 2016 AST

Donor Resuscitation

Hypothermia

Cardiac transplantation with a donor heart rescued from deep hypothermia

Luca Botta, MD,^a Stefano Branzoli, MD,^b and Luigi Martinelli, MD^a

Variable	Arterial gas ^a	Venous gas
рН	6.89	6.65
Pco ₂ , mm Hg	53.7	75
Po ₂ , mm Hg	525	96.8
HCO ₃ , mmol/L	N/A	4.6
Base excess	-20.6	-25.2
Lactate, mmol/L	18	21
K ⁺ , mmol/L	N/A	5.5

Table 1Blood Gas Analyses of Donor With Accidental DeepHypothermia

NA, not available; Pco_{2} , partial pressure of carbon dioxide; Po_{2} , partial pressure of oxygen.

^aVenous gas analysis was performed at intensive care unit admission, and arterial analysis was done 1 to 10 minutes later. Both examinations had a fraction of inspired oxygen of 100%.

J Heart Lung Transplant 2011;30:1203-4.

Hypothermia

White CW Am J Transplant 2016;16:773.

Other Means

CUTTING EDGE OF TRANSPLANTATION 2016 **RESOLVING THE ORGAN SHORTAGE** PRACTICE | POLICY | POLITICS

AST

Conclusions

- Cardiac dysfunction is common following brain death
- Hemodynamic-guided resuscitation of the brain dead donor increases organ recovery independent of hormone therapy
- Role of HR in hemodynamically stable donors is uncertain
- Vasopressin rather than NE is the agent of choice

Effect of CVP on OTPD

	Final CVP ≥ 10	Final CVP <10	
	(N = 73)	(<i>N</i> = 146)	<i>p</i> -value
OTPD	3.38	4.54	< 0.001
Heart/donor	0.39	0.56	0.019
Lungs/donor	0.19	0.75	< 0.001
Liver/donor	0.83	0.93	
Kidneys/donor	1.68	1.90	0.010
Pancreas/donor	0.29	0.39	

CVP, central venous pressure.

Abdelnour T et al. J Heart Lung Transplant 2009;28:480-5.

Outline

- 1. Hormone depletion is a consequence of brain death
- 2. Endocrine failure is common & associated with adverse biologic effects
- 3. Several lines of evidence that HR should be beneficial
 - 1. Hemodynamic effects of Thyroid hormone look up
 - 2. Hemodynamic effects of corticosteroids look up Lyons, look up McLean
- 4. Animal studies
- 5. Human study Novitzky
- 6. Crystal City consensus
- 7. Prospective clinical trials
- 8. Meta analysis look up Randell trial possibly harmful
- 9. Large database analysis
- 10. Current protocols
- 11. Hypothermia case
- 12. Moderate hypothermia in DCD

