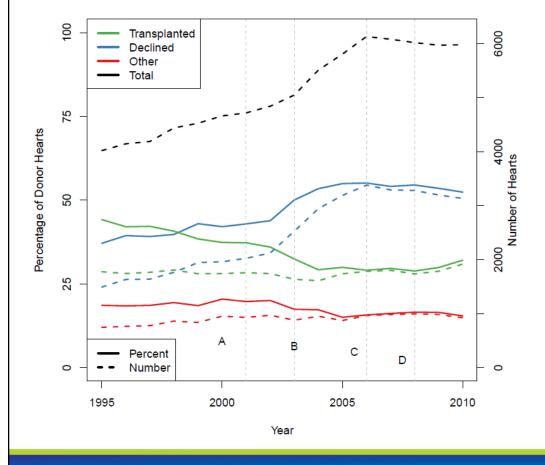
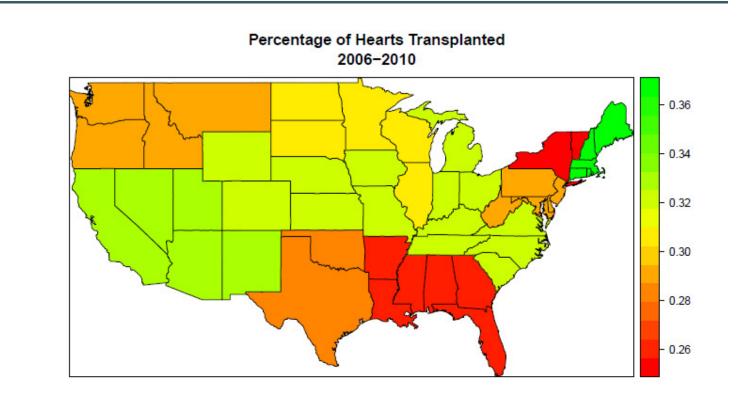
Developing a Risk Score in Heart Transplantation

Kiran K. Khush, MD, MAS Associate Professor of Medicine Stanford University School of Medicine


FEBRUARY 25-27, 2016 • PHOENIX, ARIZONA

Conflict of Interest Disclosure

- Grant Funding
 - NIH (NHLBI, R01)
 - American Heart Association
- CareDx, Inc: consultant, advisory board, speakers' bureau

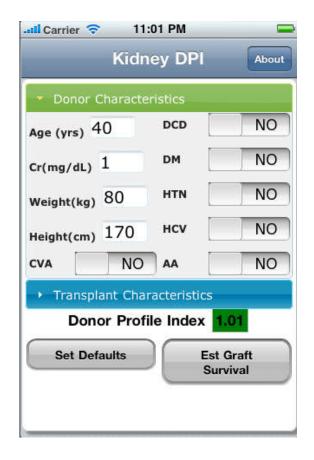

Decline in donor heart utilization nationwide

SRTR data 1995-2010, All DNDD donors aged 14-70 years

- High: 44% in 1995
- Low: 29% in 2006
- Current: 32%
- Waiting time has increased by 3.5 months for status 1B and 9.3 months for status 2 recipients.

Regional variability in donor heart acceptance for transplant

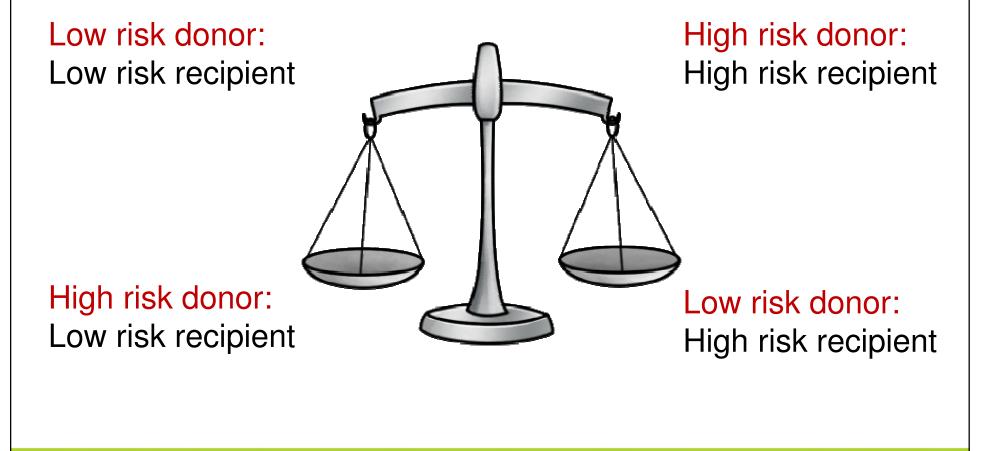
Khush K, Am J Transplantation, 2015


Advantages of having a risk score

- Tool that can be used "real time" for decisionmaking during an organ offer
- Applies evidence-based data, using donor and recipient risk factors, to predict transplant outcomes
- Standardize donor heart acceptance across the country
- Improve donor heart utilization

Kidney Donor Risk Index (KDRI)

- Real-time tool that combines donor risk factors to summarize the risk of graft failure after kidney transplant
- A donor with a KDPI of 80% has a higher expected risk of graft failure than 80% of all kidney donors recovered last year
- Launched on-line and as an app



Liver Donor Risk Index (LDRI)

📶 Carrier 🔿	12:38 A	M	
	Liver D	RI	About
Enter Do	nor Cha	racteris	tics:
Age (yrs) Below 40	10-50 50-60	60-70 Al	pove 70
Height enter	height(cn	n)	
Cause of Dea	th a Stroke A	noxia Otl	ner
Graft Type Stndrd Prtl/S	COLUMN AND A	ace White Bla	ck Other
Cold Ischemi 1 hour		onor Loca ocal Regi	ation onal Nat'l
Esti	mate Graf	t Surviva	
Dono	r Risk In	dex 1.0	0

How do we combine donor and recipient risk?

High risk donor: High risk recipient

PRO

- Offer a heart that may have been discarded to a recipient who otherwise may not have been eligible for transplant
- Use "marginal" donor hearts for sickest patients, since they are likely to have a survival benefit, even though post-transplant outcomes may be sub-optimal

CON

 Transplanting a high-risk donor heart into a high-risk recipient may be considered an irresponsible accumulation of risk with a high likelihood of patient death after transplant.

High risk donor: Low risk recipient

PRO

 Higher likelihood of graft survival

CON

- Placing our "best" candidates at a disadvantage?
- Reducing long-term survival

Balancing Risk: Impact of Transplant Center Volume

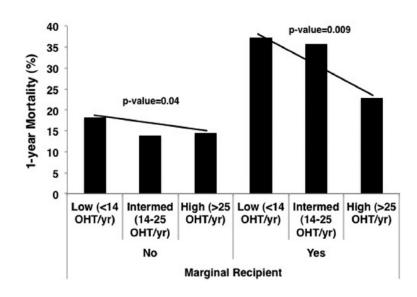
Does institutional volume impact outcomes after HTx using marginal donor hearts?

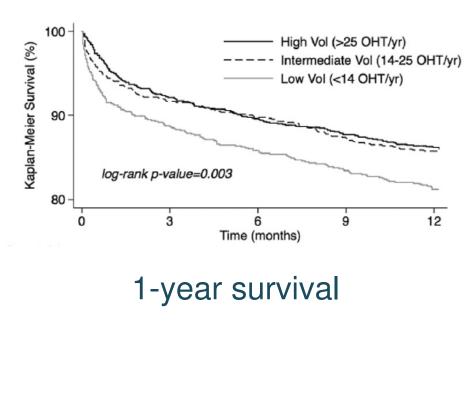
- UNOS registry analysis, N=3200, 2000-2010
- Identified marginal donors (>90th percentile in Weiss donor risk index)
- Stratified into tertiles based on transplant center volume (<14, 14-25, >25)
- Examined post-transplant outcomes

Kilic, Ann Thorac Surg, 2012

Impact of transplant center volume

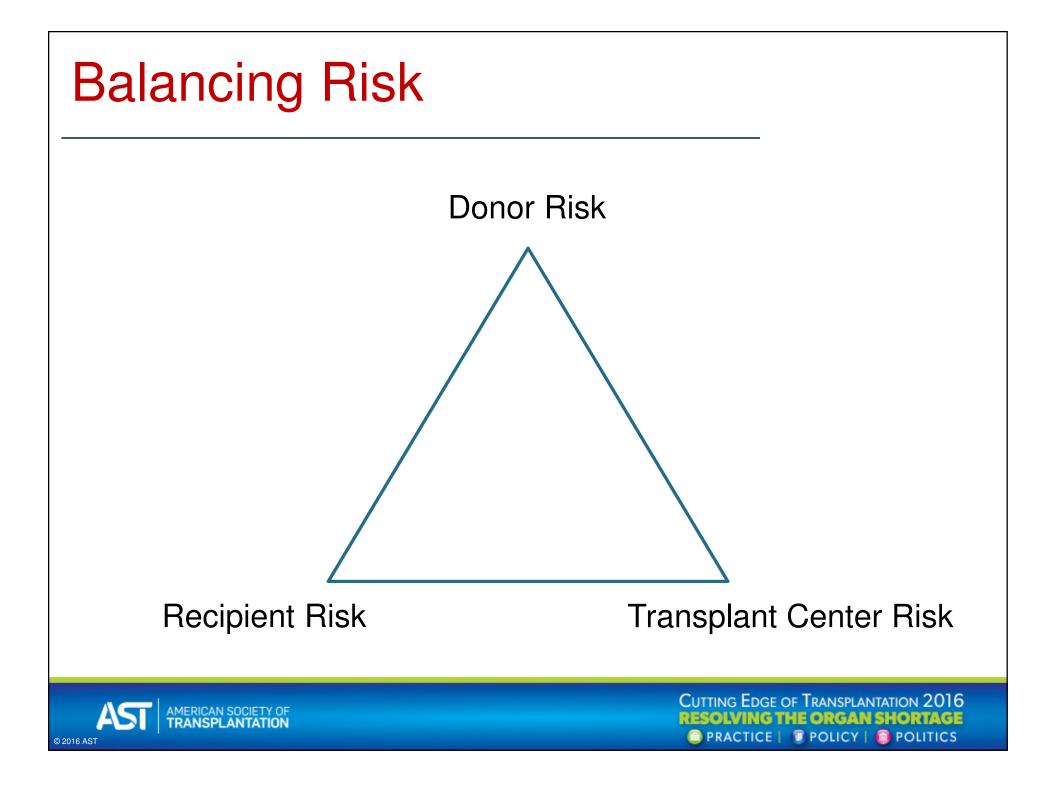
Marginal vs. Standard Donors


- Recipients of marginal donor hearts were higher risk than recipients of standard donor hearts (IMPACT score 6.2 vs 5.6, p<0.001)
- A higher proportion of HTxs at high volume centers was performed using a marginal donor (high 22.4%, low 16.2%)
- High-volume centers had highest average donor risk index


Kilic, Ann Thorac Surg, 2012

Impact of transplant center volume

Impact of center volume on 1-year mortality in marginal recipients



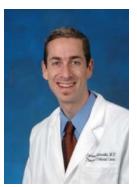
Balancing Risk: Impact of transplant center volume

Conclusions

- Marginal donor heart transplants are more complex (higher donor risk, higher recipient risk, higher complication rates)
- Transplant center experience plays an important role
 - Experienced personnel
 - Experience selecting marginal hearts (e.g. older donors with short ischemic time)
 - Standardized clinical pathways
 - Dedicated ICU and ancillary staff

Looking forward

- High-risk transplants should ideally be performed at high-volume centers.
- Introduction of a risk stratification scheme may prevent penalizing centers that transplant higher risk donors and recipients by accounting for case mix in quality and reimbursement measures.
- Rigorous, high-quality data required to develop a real-time risk score incorporating donor- and recipient-specific variables are lacking



Evidence-Based Evaluation and Acceptance of Donor Hearts for Transplantation

- Funded by National Institutes of Health
- 5-year prospective study
- 5,000 potential heart donors

PI: Kiran Khush, Stanford

Co-I: Darren Malinoski, OHSU

Co-I: Jonathan Zaroff, KPSF

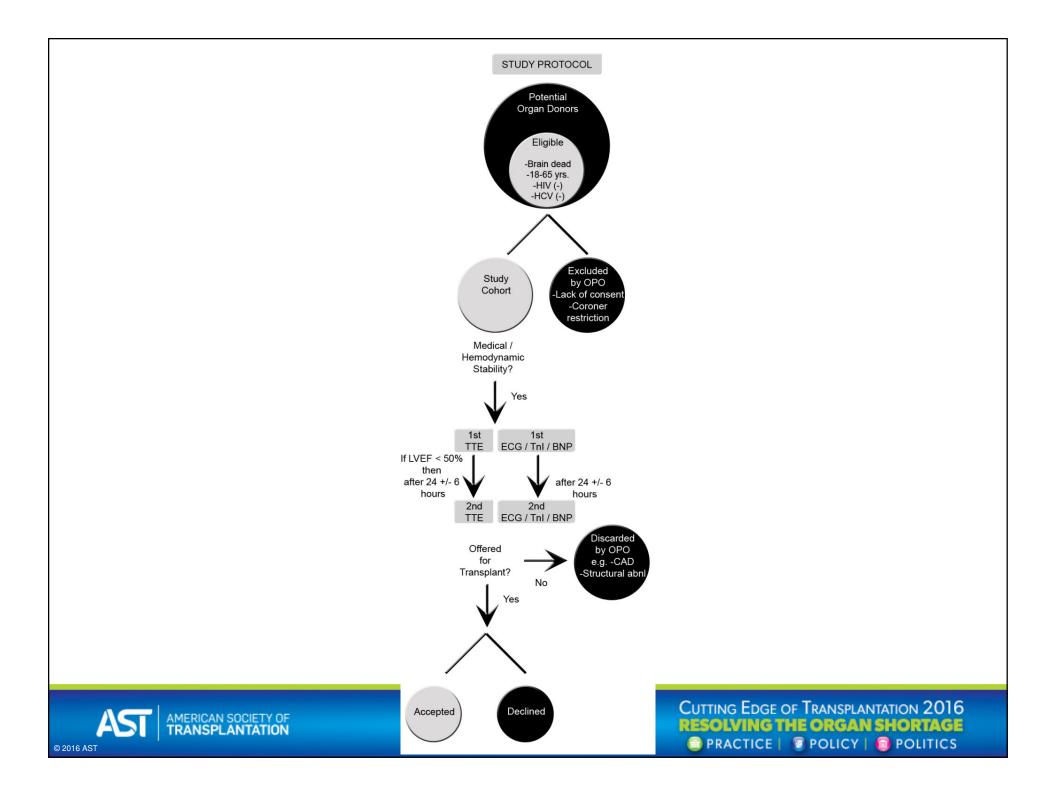
CUTTING EDGE OF TRANSPLANTATION 2016 **RESOLVING THE ORGAN SHORTAGE** PRACTICE | POLICY | POLITICS

AMERICAN SOCIETY O TRANSPLANTATION

7 participating high-volume OPOs representing 6 UNOS regions

Aim 1: To collect systematic data on cardiac structure and function in a nationallyrepresentative cohort of potential heart donors

- Serial ECG, TnI, BNP during donor management
- Serial TTEs in donors with LV dysfunction (EF<50%) with core interpretation
- Data collection on donor heart acceptance



Aim 1: To collect systematic data on cardiac structure and function in a nationallyrepresentative cohort of potential heart donors

Study Databases

- Stanford REDCap
- DMG Web Portal

Aim 2: To collect realtime detailed data on reasons for donor heart non-acceptance APPENDIX D.2.a: DONOR HEART NON-ACCEPTANCE SURVEY (for hearts declined by transplant center) Date: Time: : Transplant Center: ____ Donor UNOS ID: Potential transplant recipient number: Sequence/Rank No._ Offer made to: Surgeon Surgical Fellow Cardiologist Cardiology Fellow NP Nurse Coord. Survey Completed by: Surgeon Surgical Fellow Cardiologist Cardiology Fellow NP Nurse Coord. Directions: Check all reasons that apply for donor heart declination.

RECIPIENT ISSUES

- □ Recipient: □ill □unavailable □declined
- Recipient already transplanted П
- Recipient's condition improved, transplant not
- needed Multiple organ transplant П
- Recipient declined due to high risk donor
- Medical urgency of another potential recipient п
- п Other (specify):

TRANSPLANT CENTER ISSUES

- Surgeon unavailable
- Heavy workload in OR
- Distance too far
- Exceeded 1 hour response time
- Logistics (specify):
- Minimum acceptance criteria not met
- Other (specify):

HISTOCOMPATIBILITY REASONS

- ABO incompatible
- Positive crossmatch
- Number of HLA mismatches unacceptable No serum for crossmatching
- High CPRA
- Other (specify):

OTHER

Specify:

- DONOR ISSUES Donor age
 - Gender Male Female
 - Height disparity
 - Weight disparity
 - D Public Health Service (PHS) high risk: HIV □Hep B □Hep C □IV Drugs □Hemodialysis □Other:
 - Social hx: Jail/prison Hx of STDs Behavior risk Unobtainable
 - Other Drug Usage Meth Cocaine
 - Alcohol Abuse
 - Donor instability (high pressor requirement:
 - agent & dose
 - Surgical damage to organ
 - Trauma to organ Organ preservation

 - Organ anatomical damage/defect □ ECG: □LVH □ Ischemia □ prolonged QTc
 - Other:
 - ECHO: LVH: cm Low EF :_ Other: Cath/Angiogram CAD PHTN PA pressure ____ PCWP
 - Other: Medical History Diabetes Hypertension Other:
 - Elevated biomarkers (Troponin, CKs)
 - Donor infection
 - Cardiac downtime (time:
 - Insufficient information (i.e. cath or echo not available; specify:
 - Cause of death (specify):
 - Offer not made due to expedited placement attempt
 - Other:
- CUTTING EDGE OF TRANSPLANTATION 2016 **RESOLVING THE ORGAN SHORTAGE** 🖹 PRACTICE | 🗊 POLICY | 👩 POLITICS

Aim 3: To develop clinical tools to assist transplant centers with real-time decisions about donor heart acceptance

 Risk models for recipient outcomes, given donor and recipient characteristics at the time of an organ offer

Sample Donor Heart Report

Donor Characteristics:

Age	Gender	Cause of Death
45	Male	Stroke

Donor Health:

Hypertension	Diabetes	Coronary Artery Disease
No	Yes	No

Echo Results:

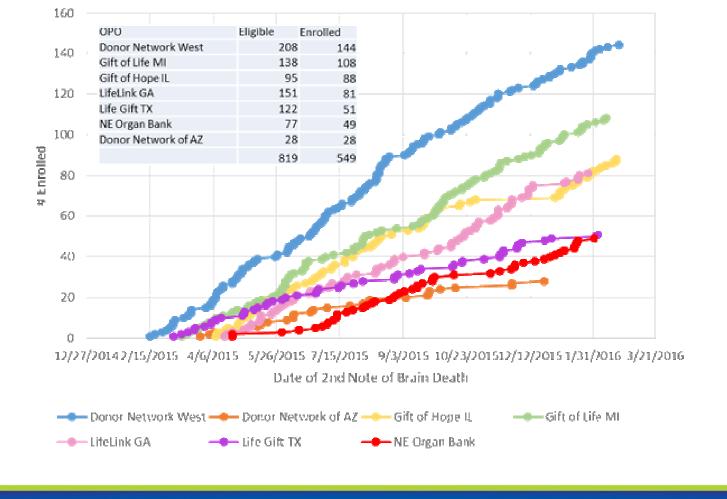
Ejection Fraction	Regional Wall Motion Abnormalities	Left Ventricular Hypertrophy
58%	No	Yes

A heart with these characteristics has been transplanted 83% of the time. 97% of patients with a similar heart survive at least 30 days and 92% survive 1 year. It is expected that you would have to wait on average 6 months to be offered a more desirable heart.

AMERICAN SOCIETY OF TRANSPLANTATION

Study Goals

- Standardized data collection on donor characteristics nationwide
- To study prevalence and reversibility of cardiac dysfunction after brain death
- To identify biomarkers that define organ quality
- Detailed examination of current donor heart acceptance practices
- To identify donor predictors of recipient outcomes
- To develop tools that can be used real-time in decision making for donor heart acceptance



Enrollment v. Time

© 2016 AST

Thank you

