Donor Heart Risk Factors

David A. Baran, MD, FACC, FSCAI Director, Heart Failure and Transplant Research Newark Beth Israel Medical Center Newark, New Jersey Clinical Associate Professor of Medicine Rutgers New Jersey Medical School

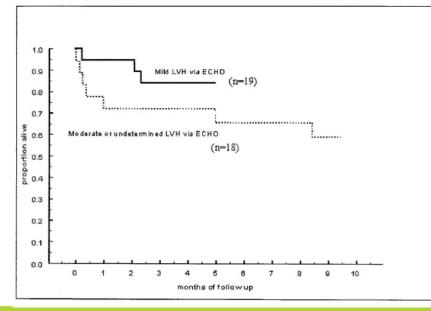
FEBRUARY 25-27, 2016 • PHOENIX, ARIZONA

Conflict of Interest Disclosure

- Research support from Astellas (investigator initiated clinical trial)
- No off-label use

Agenda

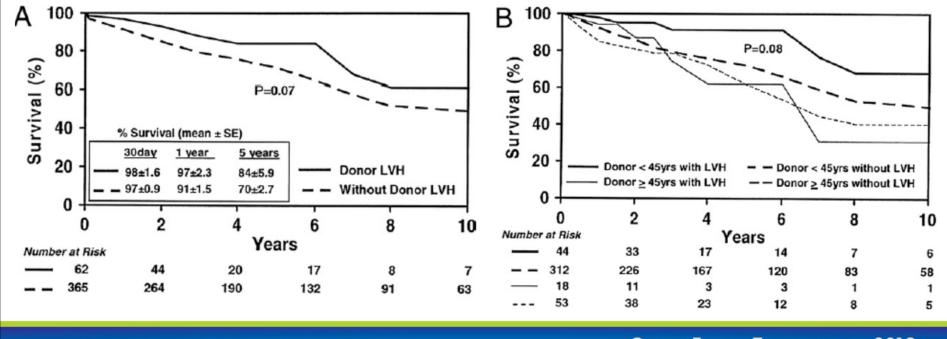
- Hypertrophy
- Age
- Coronary artery disease
- Dysfunctional donors
- 2007-2014 Snapshot with Donor Sequence Numbers



Left Ventricular Hypertrophy

The Use of Donor Hearts with Left Ventricular Hypertrophy

Daniel Marelli, MD, Hillel Laks, MD, Daniel Fazio, BS, Sara Moore, BA, Jaime Moriguchi, MD, and Jon Kobashigawa, MD

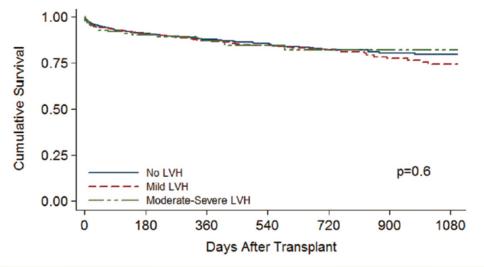

J Heart Lung Transplant 2000;19:496–503.

n-=37 Mild vs Mod LVH P=0.11

Use of Cardiac Allografts With Mild and Moderate Left Ventricular Hypertrophy Can Be Safely Used in Heart Transplantation to Expand the Donor Pool

Sorel Goland, MD,[‡] Lawrence S. C. Czer, MD,^{*} Robert M. Kass, MD,[†] Robert J. Siegel, MD,^{*} James Mirocha, MS,[†] Michele A. De Robertis, RN,[†] Jason Lee, BS,[†] Sharo Raissi, MD,[†] Wen Cheng, MD,[†] Gregory Fontana, MD,[†] Alfredo Trento, MD[†]

© 2016 AS


ERICAN SOCIETY OF

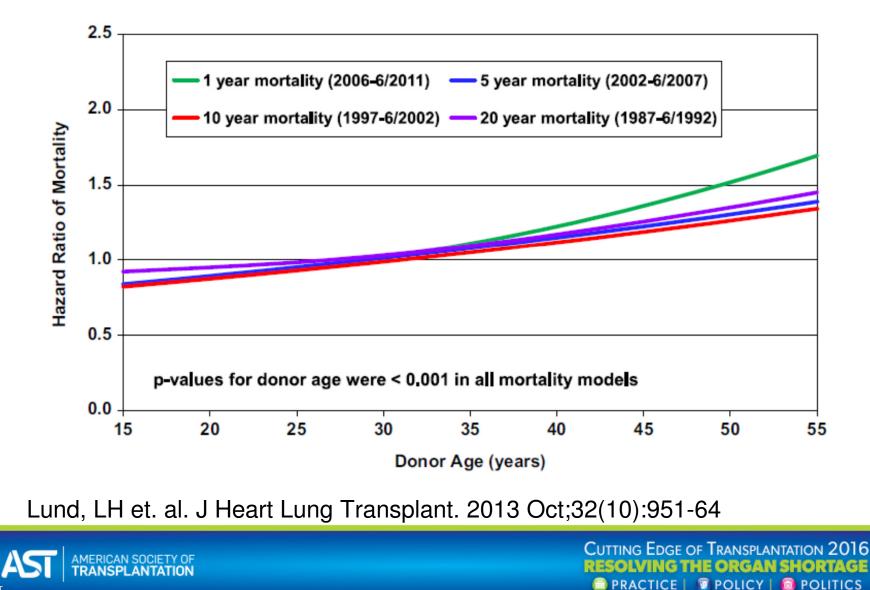
TRANSPL ANTATION

Impact of Donor Left Ventricular Hypertrophy on Survival After Heart Transplant

O. Wever Pinzon^{a,b,c}, G. Stoddard^a, S. G. Drakos^{a,c}, E. M. Gilbert^{a,b}, J. N. Nativi^{a,b}, D. Budge^c, F. Bader^{a,b}, R. Alharethi^c, B. Reid^c, C. H. Selzman^{a,b}, M. D. Everitt^d, A. G. Kfoury^c and J. Stehlik^{a,b,*}

- 2626 donors
- 1002 mild LVH, 148 mod- severe LVH

CUTTING EDGE OF TRANSPLANTATION 2016 RESOLVING THE ORGAN SHORTAGE

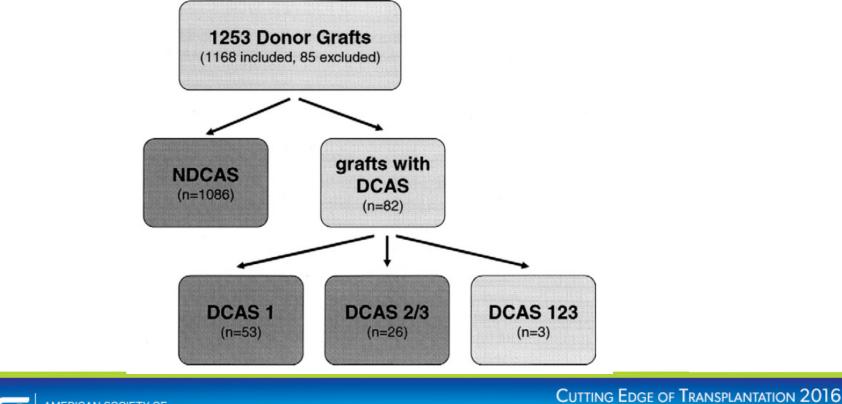


CUTTING EDGE OF TRANSPLANTATION 2016 **RESOLVING THE ORGAN SHORTAGE** PRACTICE | POLICY | POLITICS

AS

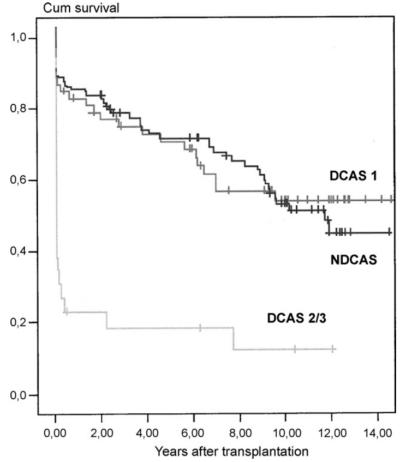
AMERICAN SOCIETY OF TRANSPLANTATION

Impact of Older Donors



CAD of the Donor

Coronary atherosclerosis of the donor heart - impact on early graft failure $\stackrel{\scriptscriptstyle \bigstar}{\approx}$


Onnen Grauhan^{*}, Henryk Siniawski, Michael Dandel, Hans Lehmkuhl, Christoph Knosalla, Miralem Pasic, Yu-Guo Weng, Roland Hetzer

European Journal of Cardio-thoracic Surgery 32 (2007) 634-638

Single Vessel Disease vs **Multivessel**

One vessel CAD does not influence survival within limits of selection bias of this study.

Dysfunctional Donors

- Not a new problem
- Donor shortage: use of the dysfunctional donor heart.
- Boucek MM, Mathis CM, Kanakriyeh MS, McCormack J, Razzouk A, Gundry SR, Bailey L. J Heart Lung Transplant. 1993 Nov-Dec;12(6 Pt 2):S186-90.
 PMID: 8312334 Related citations
 - Likely related to catecholamine surge from brain death
 - May be similar to Takosubo / stress cardiomyopathy

Research Correspondence

Frequency and Pattern of Left Ventricular Dysfunction in Potential Heart Donors

Implications Regarding Use of Dysfunctional Hearts for Successful Transplantation

*Burhan Mohamedali, MD Geetha Bhat, PhD, MD Allan Zelinger, MD

*University of Illinois at Chicago (UIC)

Table 1 Summary of 11 Potential Donors With Cardiac Dysfunction

Age (Yrs)	Sex	Cause	Dysfunction Pattern	Peak Troponin I	Peak CK-MB	Pressors	Initial EF	Repeat EF	Repeat EF Time Frame
31	Male	Head trauma	Diffuse global	0.55	7.0	Desmopressin, phenylephrine	34%	45%	10 h
46	Male	Drug overdose	Diffuse global	9.57	27.6	Dopamine, norepinephrine	40%		
25	Male	Vehicle accident	Diffuse global	0.36	38.9	Dopamine, phenylephrine	25%	60%	1 0 h
20	Male	Gun shot head	Basal	1.55	22.0	Norepinephrine	45%		
45	Female	Drug overdose	Diffuse global	2.92	6.5	Dopamine, phenylephrine	12%		
20	Male	Gun shot head	Diffuse global	0.73	33.9	Desmopressin	30%		
55	Female	SAH	Basal	NA	14.7	Desmopressin, phenylephrine	43%		
18	Male	Gun shot head	Midcavity	4.14	14.1	No pressors	35%	41%	3 h
63	Male	SAH	Basal	3.22	17.6	Desmopressin	40%		
51	Female	Cardiac arrest	Apical	0.32	14.1	Desmopressin	35%	56%	36 h
23	Male	Gun shot head	Apical	NA	NA	Phenylephrine	30%	60%	10 h

How Do We Place Available Donors?

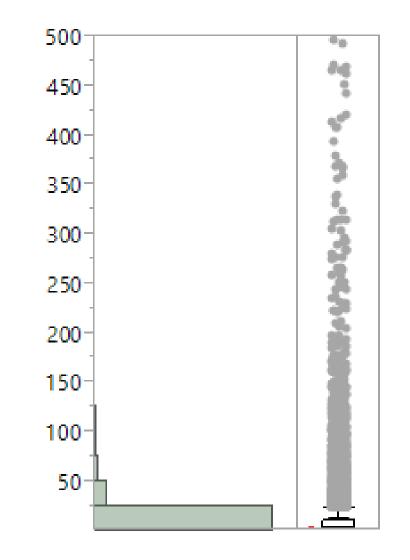
- DonorNet launched in 2006 from UNOS
- Assigns PTR (potential transplant recipient) # based on exact priority on the waiting list
- Electronic notification, availability of documents and some images across all US centers
- Simplified notification and communication among the OPO and local coordinators and potentially distant accepting physicians
- Transparent- Can see how many candidates are ahead and behind as well as real time "provisional acceptance" and denial codes

Downsides of Electronic Notifications

- Relies on correct information in chart
 Echo's change, details may develop
- Reduces personal element of discussion
- By showing the full list, may create a psychological disincentive to take organs turned down by others

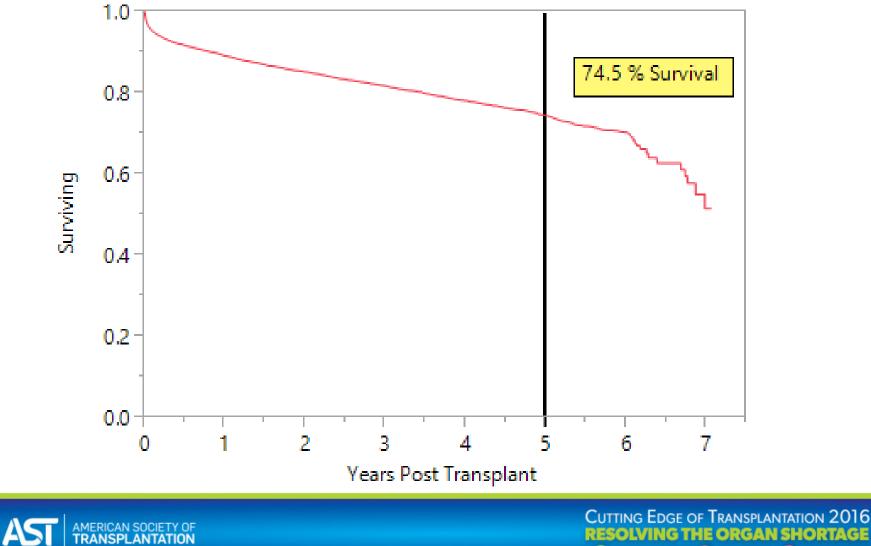
Donor Sequence # and Survival

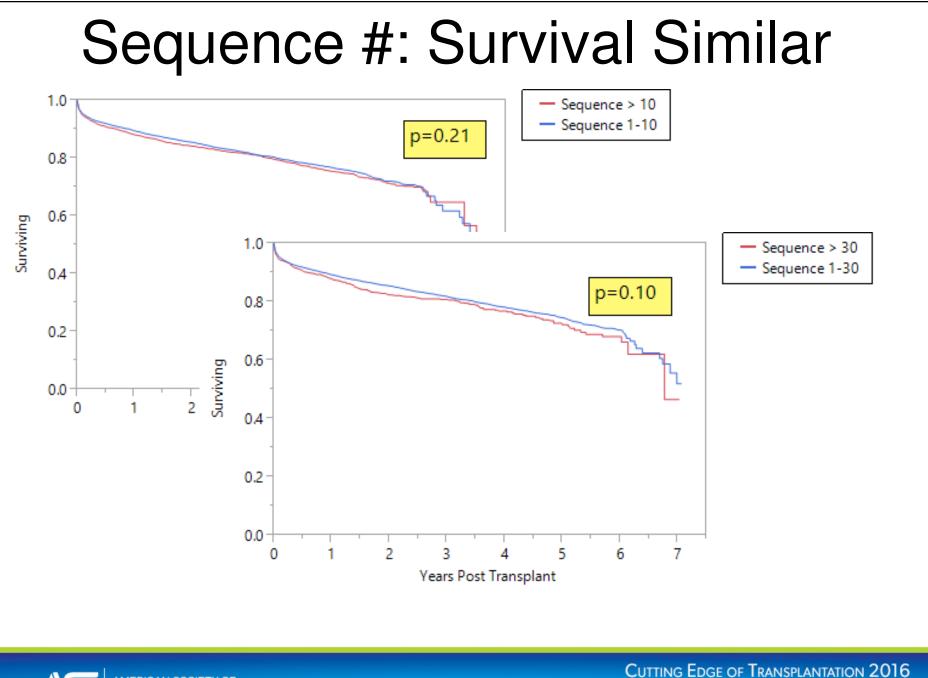
- Queried UNOS /OPTN for custom dataset with PTR #s
- 13,481 adult heart transplants with PTR data from 5/1/2007 – 3/31/2014
- Disclaimer: Analyses in progress, UNPUBLISHED at this moment
- Accepted at ISHLT 2016 for presentation



Snapshot 2007-2014: 13,481 Hearts

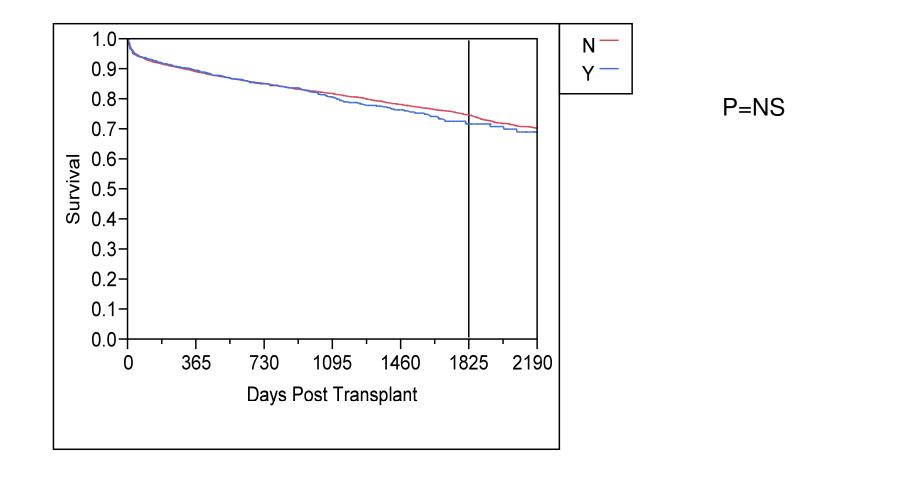
	M	ean ± Std Dev
Range		
	74%	
1	8-79	52.63 ± 12.84
0	-943	24.76 ± 47.27
0-:	1904	77.82 ± 141.74
0-3	3164	65.88 ± 201.54
	9-66	31.68 ± 11.7
	71 %	
74	.1 %	
14	.3 %	
	15 %	\mathbf{i}
14	.2 %	
	3 %	
10).5 %	
0.22-12 h	ours	3 <mark>24 ± 1.06</mark>
40-8	81 %	61.6 ± 7.1
	0 	Range 74% 18-79 0-943 0-1904 0-1904 9-66 71 % 74.1 % 14.3 % 15 % 14.2 %


Donor PTR/ Sequence


	Quant	iles					
	100.0%	maximum	1263				
	99.5%		291.28				
	97.5%		84				
<	90.0%		27	>			
	75.0%	quartile	: 10				
	50.0%	median	ı 3				
	25.0%	quartile	: 1				
	10.0%		1				
	2.5%		1				
	0.5%		1				
	0.0%	minimum	i 1				
	Summary Statistics						
	Mean		13.364236	5			
	Std Dev		45.689345				
	Std Err M	/ lean	0.395538	3			
	Upper 9	5% Mea	14.139546	5			
	Lower 9	5% Mean	12.588925	5			
	N		13343	3			

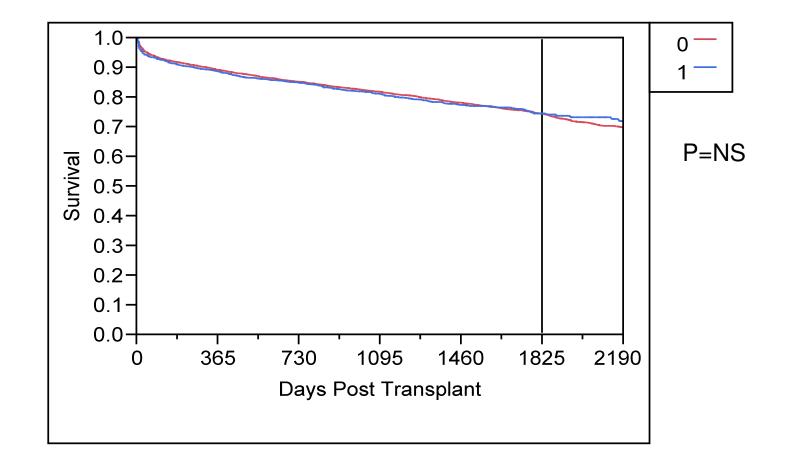
Survival, n=13,438, 2007-2014

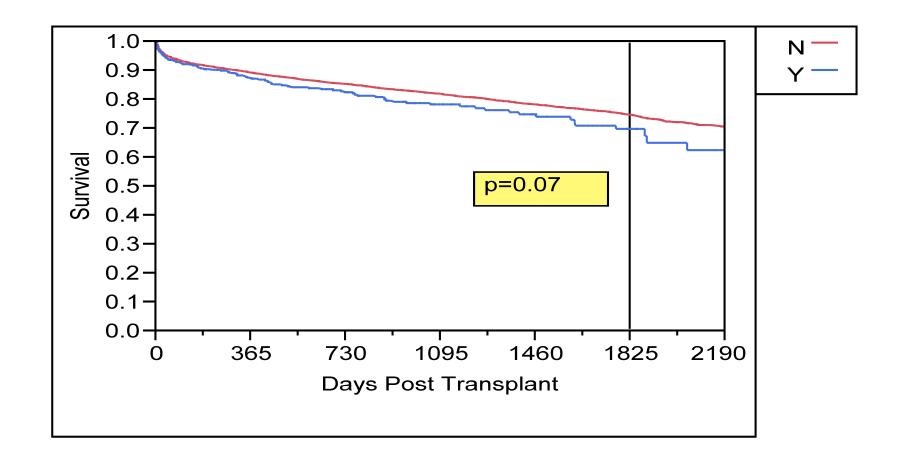
PRACTICE | POLICY | POLITICS


© 2016 AST

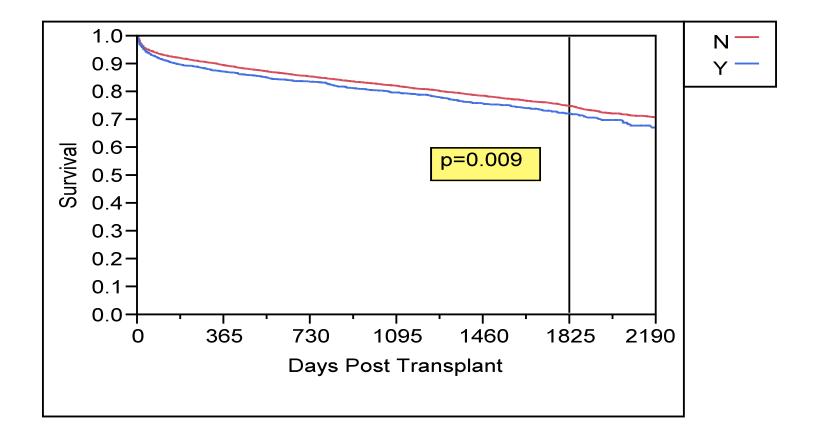
Factor	Mean (Seq 1-30)	Mean (Seq ≥ 31)	p-value
Recipient ABO O	38.13%	46.13%	p<0.0001
Recipient ABO AB	6.00%	1.98 %	p<0.0001
Recipient Age	52.41 ± 12.90	55.05 ± 11.98	p<0.0001
Donor Age	31.18 ± 11.47	36.70± 12.83	p<0.0001
CDC High Risk	10.20 %	16.61%	p<0.0001
UNOS Status 1A Days	25.79 ± 47.65	13.28 ± 39.37	p<0.0001
UNOS Status 1B Days	79.44 ± 143.40	60.27± 121.37	p<0.0001
Miles to Donor Hospital	164.77± 200.20	376.81± 273.75	p<0.0001
Donor Gender: Male	73.00%	50.69 %	p<0.0001
Donor Hx Hypertension	13.32%	26.16%	p<0.0001
Ischemic Time	3.19 hr ± 1.05	3.76 hr ± 0.98	p<0.0001
LVEF	61.70 %± 7.08	61.07 %± 7.21	p=0.005

Outcomes With Traditional Risk Groups


Donor CDC High Risk


Outcomes With Traditional Risk Groups

Female Donor / Male Recipient



Diabetic Donor

Hypertension Hx in Donor

Why Don't We Use High Sequence Donors?

Unintended Consequences

- DonorNet transparency and sequences should have made increased efficiency
- Utilization should have gone up
- As we embark on a drastic reworking of allocation and geographic distribution for hearts in the US we must be mindful of unintended consequences

Conclusions

- We will never have sufficient donors to meet the demand for this life saving therapy
- We must use evidence to see that we are leaving donors that could be utilized safely.
- Sequence # could be a way of identifying "extended criteria donors" and potentially moving them out of the UNOS PSR assessment to encourage use in a trial setting.

